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Abstract—The two-dimensional problem of an elliptic hole in a solid of anisotropic piezoelectric
material is studied. The Stroh formalism is adopted here. Real form solutions are obtained along
the hole boundary in the case of an arbitrarily prescribed vector field on the hole surface. For an
elliptic rigid inclusion of electric conductor subjected to a line force, a torque, and a line charge, a
real form solution at the interface is obtained. Finally, general solutions for an elliptic piezoelectric
inclusion with uniform loading at infinity are investigated. Copyright € 1996 Elsevier Science Ltd

1. INTRODUCTION

In 1958 and 1962, Stroh elaborated the work of Eshelby e al. (1953) on two-dimensional
problems of general anisotropic elasticity involving dislocations, line forces, and steady
waves. This powerful and elegant approach was named the Stroh formalism.

In 1975, Barnett and Lothe extended Stroh’s 1962 paper to include the piezoelectric
effect in which an eight-dimensional framework had been developed. Here, we consider the
two-dimensional problem of an elliptic hole in a solid of anisotropic piezoelectric material.
Similar problems had been studied by Pak (1992) and Sosa (1991). Although some useful
solutions had been derived in these two papers, they were both restricted to the transversely
isotropic situation. In Pak’s 1992 paper, special remote loading conditions were employed
and the concentration effect was studied. Likewise, only remote loadings were considered
in Sosa’s 1991 paper.

Here, solutions of an arbitrarily prescribed loading on the hole surface are derived.
Furthermore, in the case of an elliptic rigid inclusion of electric conductor subjected to a
line force, a torque, and a free line charge, real form solutions along the elliptic interface
are obtained which could be used to examine the concentration effect. Finally, we investigate
the situation of an elliptic piezoelectric inclusion with uniform loading at infinity.

In the following basic solutions of the Stroh formalism with the piezoelectric effect are
given. Some boundary conditions are shown in Section 2. In Sections 3 and 4, a few useful
relations are derived. General field solutions to the elliptic problem are obtained in Section
5 with emphasis on solutions along the elliptic boundary. Such boundary solutions could
be employed to investigate the concentration effect. However, arbitrary constant vectors
are involved and remain unknown. They will be determined in Sections 6, 7, and 8 in which
different boundary conditions are applied.

In a Cartesian coordinate system (x,, x,, x;) the constitutive equations for piezoelectric
materials are given by (Tiersten, 1969)

O'lj = Ci/kmuk.m +emii(p.m* Dl = eikmuk.m - wimw.m (i’jﬂ k’ m= 1 1 23 3) (1)

in which repeated indices mean summation and a comma stands for partial differentiation.
g,; 1s the elastic stress and D, is the electric displacement. Coefficients Ciy,, €5 @, are,
respectively, the elastic stiffnesses, piezoelectric constants, and permittivities with the fol-
lowing symmetries :
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C[/'km = C[l'km - CA’ml/v € = emli’ Wiy = wmi' (2)

mij

u, is the elastic displacement and ¢ is the electrostatic potential. Cy,, and w,, are positive
definite in the sense that

Cligmtt; g > 0, w0, EE, >0 3)
for arbitrary real nonzero u,;; and E; with
E=—g. @
In the absence of body forces and free charges, the balance laws require
0,,=0, D;;=0. (5

For two-dimensional deformations in which u, and ¢ depend on x, and x, only, a general
solution to (5) is given by

wy=aflz) (J=123,4) (6)
in which
I=X,+pxy, Uy =@, N
and p, a, are constants to be determined. In matrix notation,
u = af{z). (8)

Thus u, a are four-vectors and u is called the generalized displacement. By defining

Qf e REY e, TE e
o-[g Lol Sl b
e-1r1 — Wi eTz — W12 egz — W7
where
(QE)ik = Cizis (RE)ik = Cigas (TE)ik = Cpyas (eij)m = €ijm» (10)

we combine (1), (5), and (6) into one equation as

[Q+p(R+R")+p’T]a = 0. (11)
The 4 x 4 matrices Q and T are symmetric but not positive definite. However, they can be

shown to be nonsingular.
Let the generalized stress function vector ¢ be defined as

. —1
¢ =bf(z), b=R"+pT)a= 7(Q+1?R)a, (12)
with
g, = _—¢1.2’ 01'2 = qbi‘l’ Dl = _¢4.27 D2 = ¢4.l' (13)
The second equality in (12), follows from (11). Equation (13) provides all components of
o, and D, except ¢3; and D, ; they can be determined from (1).

With the positive definiteness of Cy,, and w,, shown in (3), the eigenvalues p of (11)
are all complex and consist of four pairs of complex conjugates. Let
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pc{+4 :p;’ Im {pz} > 0 (Cx = 1’23 3e4)9 (14)
a1+4 = a_o(s b1+4 = E» (15)

where the overbars denote the complex conjugates. The general solution obtained by
superposing eight solutions of (8) and (12), associated with the eight eigenvalues p, are

u=2Re {}4: aafa(za)}, ¢ = 2Re {i b,f;(za)} (16)

in which Re stands for the real part and f,, , = f, (« = 1, 2, 3, 4) is chosen.
In most applications

J:(2:) = q.f(z,)  (xnotsummed) (17)

is assumed. Hence, eqn (16) reduces to, in matrix notation,
u = 2Re{A{f(zs))q}, ¢ =2Re{B{flz.:))q} (18)
where A and B are 4 x 4 matrices given by
A=[a,,a;,a5,a,], B={[b b, byb,]. (19)
and {f(z4)) is the 4 x 4 diagonal matrix
Mz)) = diag (flz1),f(22). (23).M(24))- 20)

The elements of the four-vector q are ¢, (x = 1, 2, 3, 4). Notice that the solutions given in
(18) are in terms of the arbitrary function f{z,) and the arbitrary complex constant vector
q.

2. BOUNDARY CONDITIONS

Consider an arc or a contour C described by

X = x;(s) 5 5
C(S)I{ [x1(9)]" +[x2(9)]" =1, (21)

3
X3 = X,(8)

where s is the arc-length. The unit tangential vector n and the unit normal vector m are

given by
dx dx dx dx
T _ | 9M 2 T_ | 22 B 22
" [ds’ ds 0} " [ ds ™ ds’ 0} (22)

respectively. By taking derivative of ¢ in the direction of increasing s (with material on the
RIGHT-hand side) and using (13), we obtain

d¢, dg.
P =1 (j=1,2,3), ds

=D'm=0D,, (23)

in which ; is the component of surface traction vector. Similarly, one obtains
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dus_ pne k. (24)
ds

If we consider a dielectric interface with materials indicated by *“1” and *2”, the
electrical conditions at the interface are

E 'n=E,'n, D;'m, +D, m, =g, (25)

where n is a unit vector tangential to the dielectric interface, m, is an inward normal unit
vector, and o, is the free surface charge density along the interface. Without loss in
generality, we can rewrite (25) as

@ =@, D -m+D;-m, =0, (26)

If we have an interface between electric conductor ““1"" and dielectric ““2”°, then inside
the electric conductor,

D =0 E =0 27)
In the dielectric, at the interface
Ez'ang,, =0, Dz'mz = 0. (28)

3. EIGHT-DIMENSIONAL FORMALISM

The two equations in (12), can be rewritten as

o ol i) o

Since T~ exists, we can reduce (29) to

N¢ = pé, (30)
where
N [N] N, : a a1
N, NJ’ _[J’
N, =-T 'R", N,=T"!', N, =RT'R"-Q. (32)

The real 4 x 4 matrices N, and N; are symmetric. Equation (30) is a standard eigenrelation
in the eight-dimensional space. There are eight eigenvalues p, (x = 1, 2,..., 8) and eight
associated eigenvectors &,. The eigenvalues are the roots of the determinant

IN=plll = 0. (33)

The vector £ in (30) is a right eigenvector. The left eigenvector g is defined by

n"'N=py", N'y=pn, (34)
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_ m. (35)
a

Normalization of £, and #, (which are orthogonal to each other) gives

and can be shown to be

n; &, = 0, (36)

where dy, is the Kronecker delta. Making use of (15), (19), (31),, and (35), eqn (36) is

written as
B" AT[A A 1 ¢
- _|= . (37)
BT AT|B B 0 1

This is the orthogonality relation. The two 8 x 8 matrices on the left hand side of (37) are
the inverses of each other. Their product commutes so that

A AJ[BT AT 1 0
B Bl B AT 0 1

This is the closure relation and is equivalent to
AB"+AB" =1 =BAT+BA", AAT+AAT =0=BB"+BB". (39)
Hence, the three matrices S, H, L defined by
S =i(2AB"—1), H=2AA", L= —i2BB" (40)

are real. The matrices H and L are symmetric and nonsingular (Lothe and Barnett, 1976).
Since S, H, L are real, the following relation exists (Chung, 1995; Ting and Yan, 1991)

S H S H I 0
sl sl il “
L sJl-L s 0 1

which indicates that SH and LS are anti-symmetric. It can be shown that H™'S and SL™!
are also anti-symmetric,
Finally, we rewrite (30) as

N[af’(:)} _ [apf"(:)]' )
b)) Lbor )

Employing (7),. (8), and (12), leads to a matrix differential equation for u and ¢,

-]
o.] Lo
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4. THE INTEGRAL FORMALISM

Let the tensor £, be defined by (Barnett and Lothe, 1975; Kuo and Barnett, 1991)

EiJKm = Cl/’km (J, K = l.. 2. 3),

mif (J:1,2,3,K=4),

=euy (U=4;K=1,23),

= _wlm (J = K = 4). (44)

= ¢,

With n{w) and m(w) given by
n'(w) = [cosw, sinw, 0], m'(w) = [—sinw, cosw, 0] (45)
in which w is a real parameter range from 0 to 2z, we let
QJK(w) = ni(w)ElJKmnm(w)’ RJK(w) = ni(w)EIJKmmm(w)s
TJK(w) = mi(a))EiJKmmm(w)s (46)
and
Ni(w) = =T "(0)R"(®), Ny(w)=T '(w),
N;(w) = R(w)T ~"(0)RT(w) — Q(w). 47)
Lothe and Barnett (1976) have shown that

(" 1" I
S:;J N, (w)dw, H :ﬂj N, (w) do, —‘L=;J N:(w) dw. (48)
§

0 } 0

Equations (48) provide an alternate to (40) for the Barnett-Lothe tensors S, H. and L.

5. THE GENERAL SOLUTIONS

In this section the general solutions for two-dimensional deformations along an elliptic
boundary will be derived (Ting and Yan, 1991). An ellipse I" given by

r:{x, = acosy (49)

X, = bsiny

is shown in Fig. 1. Let n and m be the unit vectors tangential and normal to the elliptic
boundary, respectively and w be the angle between vector n and the positive x, axis. Hence,

Fig. 1. An ellipse in the (x,, x,) plane.
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n’ = [cosw,sinw,0], m' = [—sinw, cosw,0] (50)

which is (45). The infinitesimal arc-length ds of the ellipse is given by

ds = p(Y)dy, p(y¥) = \/a’ sin’ y+ b cos® . (51)

From (22), and (49) we see that

— b
cosw = —asin W, sinw =-——cosy (52)

(W) p(¥)

when comparison is made with (50),.
If there is a line force f and a free line-charge density 2 applied at the origin (Fig. 1),
by employing (23), the equilibrium conditions give

gfﬁr(t”,)/ds = lim ,(B)—¢(4) =/, (j=1.2.3)
(53)

§ D mds = lim ¢,(B)— pa(4) = —

in which t,, and D are the surface traction and the electric displacement of the medium
along the elliptic boundary T, respectively. Therefore, we have a jump in ¢ across the
positive x, axis if f and 4 are not equal to zero. Points 4 and B are in fact the same point
on positive x, axis except that when one moves from A4 to B counter-clockwise, the whole
ellipse I' is transversed.

Consider the transformation

n=0l+dl ! (a=1.23.4), (54

where ¢, and d, are complex constants and z, = x, +p,v,. The constants ¢, and d, are
chosen such that when (x,,x,) = I', {, (2 = 1, 2, 3, 4) is on a unit circle. That is,

Llp=e¥ =cosy+ising (w=1,2,3,4) (55)
when z, = acosy + p,bsiny and one obtains

a—ip,b a+ip,b
C,=—F7", da:T'

5 (56)

Since a, b, and Im {p,} are all positive and non-zero, it can be shown that the branch points
Z, of the transformation (54) are located inside the unit circle in the {,-plane. Hence, the
branch points in the (x,,x,) plane are located inside the ellipse. In addition, the trans-
formation is one-to-one outside the elliptic hole.

In order to satisfy the jump conditions stated in (53) along the positive x, axis, the
arbitrary function f(z,) given in (18) is chosen to be

fz) =Ing,, (57)

with z, and {, being related by (54). Also, by putting (Ting, 1986; 1988a, Hwu and Ting,
1989)
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q= ATgn +B"h, (58)

in (18) where g, and h,, are real constants, we obtain the first basic solution

u' = 2Re {An{,>)AT}g, +2Re {A(In C*>BT}hO} 59)

¢' = 2Re {B(In{,>AT}g, +2 Re {B{n{, )BT }h,

in which <{In{,> is the diagonal matrix of In{, with « = 1, 2, 3, 4. Since In{, 1s a multi-
valued function, a cut along ¥ = 0 is introduced which makes u', ¢' single-valued and
allows a discontinuity along the positive x, axis. As z, — o0, the elastic stresses and the
electric displacements obtained from (59), vanish. This is consistent with the boundary
conditions at infinity.

In order to provide analytical solutions outside the ellipse,

fz) =" q=ATg+Bh, (k=12,...) (60)

are assumed in (18) where g;, h, are real constants. Superimposing the solutions from k£ = 1
to oo leads to the second basic solution

0" =2 Y Re{A# A g +2 ¥ Re{A*)B b,

k=1 kf] (61)
¢" =23 Re{B+">AT}g,+2 Y Re {B{ DB }h,

k=1 k=1

in which {{5*) is the diagonal matrix of {,;* (« = 1, 2, 3, 4). Notice that both u" and ¢"
approach zero as z, —» o (or {, — ).
With (55) it is easy to see that

Anlyled = WL, (K> = cos(y)l—isin(ky)lL. (62)

Substituting back in (59) gives the first basic solution along the elliptic boundary T as
u'ly = '//ﬁo~ ¢'lr = Yo, (63)
h, = Hg,+Sh,, &, =S"g,—Lh,, (64)

when using (40). Similarly, the second basic solution along the elliptic boundary I" is in the
form

w'ly = 3 eosthkih,—sinkhil. ¢"lc = ¥ lcos(ki)g—sinkig]  (69)

in which

h, = Hg, +Sh,, g, =S"g.—Lh,. (66)

Some useful relations between g,. h;, &, and h, are given below (Chung, 1995; Ting
and Yan, 1991).
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Fig. 2. Generalized stress vector along the elliptic boundary.

h =L ' (S'g—&). h =L "(g+S"8) (k=01,2.), (67)
g, = —H '(h,+Sh), g =—H '"(Sh,—h) (k=0,12,..). (68)

In fact, any two of g,, h,., &, and h, can be written in terms of the others.

In order to investigate the concentration effect, we will derive the generalized stress
vector t,, and the generalized hoop stress vector t, along the elliptic boundary. In Fig. 2, if
n is the arc-length of I measured in the direction of n, then from (23) the generalized stress
vector t,, is defined as

f’VI’-l = [(tm)h(tm)z ,(t"1)3,D,,,] = ’IT’ (69)
or, using (51),.
: 0|
t”l ¢JZ p(w) 6"0 ( )

Substituting ¢'|r and ¢"| given in (63), and (65), leads to

*L

. 1 R
SR S . i v ky)g. 71
b =gy B p(‘/j)k;k[sm(kl//)gmLCOS( V)8 (71)

Note that the arbitrary constant vectors g, g;, and §; (k = 1, 2,...) are involved.
Similarly, in Fig. 3, if the generalized hoop stress vector t, is defined by

f;{ = [(tn)h(tn)l’(tn)}s _Dn] (72)

with — D, = D (—n), then by letting m be the arc-length measured in the direction of m,
it is clear that

Fig. 3. Generalized hoop stress vector along the elliptic boundary.
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t,=¢, = —¢,sino+¢,cosw (73)

where use has been made of (23) and (50),. Alternatively, one can express t, in terms of u,,
and t,, as (Chung, 1995; Ting and Yan, 1991)

in = N3 ((U)Il‘,, +N-Ir (w)im (74)

which is a relation that applies to a general shape of boundary.
For the elliptic boundary I shown in Fig. 3, we have

t Ouly £ —flgu
b= Naw) ooy PNH@), = 6+, 75)
in which
) ] X .
! = ——[N;(w)hy + NT(w)g,
t =gy Moo + NI (@)]
: N;(w) & _ )
11 - _ k ) >
B =~y L lintkaph, + coskih]} | 6
Ni(w) & _ A
T o) k; {Kklsin(ky)g, +cos(ky)g]}

J

with the use of (63),, (65),, and (71). Again the arbitrary constant vectors are involved.
In the case of a hole with free surface and electrically open (i.¢., zero normal component
of electric displacement), (74) then takes the form

fn = N}(w)u,n (77)
and t,, = 0 (Kuo and Barnett, 1991).

If we have a rigid inclusion of electric conductor with boundary condition E-n =0
given by (28),, it follows from (24) that (74) is reduced to

. u,, .
t, = N}(U))|: 0 ]+NT(w)tm (78)

in which u, is the rigid body motion of the boundary. Hence,
ll, = ll(] +Qe; x rr (79)

where u, is a rigid body translation, Q is the rotation about x, axis and rp is the position
vector of a point on the boundary. For an elliptic boundary T, rr = acos e, + b sin ye,.
Thus,

r,=n, u,=_0e;xr,=0m (80)
Substituting (80), into (78) yields (Chung, 1995)
t, = NT(w)t,, (81)

which is also applicable to circular boundary.
The hoop stress o, is given by
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Tpn = tn . (—_n) (82)
and the two shear stresses are
Oy = tn'(_m)s 0,3 = t,,'(—93) (83)

in which e} = [0,0, 1].

Notice that our solutions are all in terms of arbitrary constant vectors g, h;, g, h,
with &k = 0, 1, 2, ... When we determine these constants, we have the solutions. In the next
three sections, the arbitrary constant vectors will be determined by applying appropriate
boundary conditions.

6. AN ELLIPTIC HOLE

We consider an elliptic hole shown in Fig. 2. Let

aly = W+l = o+ Y [cos(kih, —sin(ki)h]
- (84)
Ble = @'l +"lr = o+ 3. [cosCh)ge —sinki)i)

The right hand sides of (84) are given by (63) and (65). Since ulr must be single-valued, it
follows from (84), that

-
=)

Il
=

(85)
and one obtains
h, = —S 'Hg, (86)

when (68), is employed. The generalized stress vector along the elliptic hole boundary I' is,
with (71),

x

Y {k[sin(ky)g, +cos(ky)g]} . (87)

pW) =" p(d) S

To find £,, we first substitute (67) into (84),. With (85) and
SL-'"+L7'S" =0, (88)

the generalized displacement vector along I becomes
ulr = —SL™' } [cos(ky)g, —sin(ky)g]—L"" ) [cos(ky)g +sin(ky)gd.  (89)
k=1 k=1

Equation (88) comes from the anti-symmetric property of SL™'. From (75), the generalized
hoop stress vector then takes the form
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t, = T 114 IJ}((U)SL71 R
n Nj —N; S PRI et e
t [N} (w) ;(@)SL 't + ) §
N, ! > ) )
(— :Z/),)kz_l {k[snl(kll/)gk—COS(klll)gk]} (90)

in which (87), and (89) are employed. Alternatively, one obtains

N ~ G3 Ta X . ~
L= G @+ {s -3 {k[sm(kw)gk—cos(kw)gkl}} D
with
G (w) = N[ (w)~N:(w)SL™", G;(w) = —N3(w)L™". 92)

Since N;(w) is symmetric so is G;(w)L. It can be shown that
G,(w)L = N (w)L—-N,(w)S (93)

is also symmetric.
For an arbitrarily prescribed boundary condition along I', we define a four-vector

Ta(¥),

fm(llj) = [(rm)l(lp)’ (1m)2(w)’ (Tm)3(lp)e Em(‘p)] = [fz(l//), ﬁm(l//)]

in which (z,.),() (i = 1, 2, 3) are arbitrarily prescribed traction components on I" while the
stress at infinity vanishes. D,.() ( = D(y)-m) is an arbitrarily prescribed normal com-
ponent of electric displacement of the medium along T with the electric displacement
vanishing at infinity also. Notice that D,() = 0 refers to the so-called electrically opened
situation (Kuo and Barnett, 1991 ; Pak, 1992). With the arbitrarily prescribed boundary
conditions it is clear that

%VI'I([{/) = i’"' (94)

Employing (87), and the orthogonality properties between sine and cosine, some of the
arbitrary constant vectors in terms of %,(y) are determined as

LN |

8o = 27[ JO P(‘/’)fm(‘//) dl//
_ 1 2

8 = HJ p(W)E, (W) sin(ky)dy (k=1) ». (95)
_ 1 2n

gk = EJ\ P(W)%m(lﬁ) Cos(k‘ﬁ) dl// (k = 1)

0 ,a

Equations (67),, (85), and (95), can then be used to find g, After that, h, and h, are
obtained by employing (67), and (67)., respectively. In fact h, can simply be computed
from (86).

Indeed, g, is related to the resultant line force f applied on I' and the resultant free
line-charge density 4 enclosed by I'. By considering (53) and (94), the equilibrium equation
becomes
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2

2 o T
f T, (Wp(y)dy = ﬁ t,(Y)dn = 2ng, = [ J =f (96)

0

where # is the arc-length along the elliptic hole boundary I'.
In the following some special boundary conditions of %,(i) are considered. We first
assume

p)D,.(y) = B = constant. (97)
By (96), one has
- B -
D,(y)=——= . (98)
W= " 2w
Suppose that a uniform pressure p is applied along the elliptic boundary I'. i.e.,
T () = —pm(w). 99
With this and (98),, the prescribed generalized stress vector takes the form
, b a . p
() = [ ———Ccos Y, p——siny, 0, ﬁ} (100)
7o P oy o)

in which (50), and (52) are employed. By comparing with (87), the arbitrary constant
vectors g, and §, are easily determined as

go = P&, g = —pak,, g = —pbe,, g =8 =0 (k=2), (101)

where the four-vectors &, are defined as

@ =1 =7 w2 (102)
€)= J = 1,4,3,4).
P, 1

Thus, with (89), the generalized displacement vector along the elliptic boundary is simply

b
uly = SL™'p(x,&, —xzél)'i’L]P(axlél + széz>- (103)

Similarly, with (91), (94). and (100), the generalized hoop stress vector is given by

[ psine ] [0 ] cosw
—pcosw 0 p
t. =G () 0 +Gi()S" | 0 | —Gi(w)p ESinw . (104)
B B
p(y) L) |

Likewise, we can consider a uniform in-plane shear stress 7 instead of a uniform pressure
p.

In addition to the special boundary condition stated in (97), the traction boundary
condition described by
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p(¥)t,, () =y = constant = % (105)

is considered. Following the similar procedure given above, we have
u|- = 0 = constant (106)

which implies that the elliptic hole is not distorted and the electrostatic potential is constant
on the hole surface. Consequently, if the elliptic hole is filled with a rigid electric conductor
and subjected to a concentrated line force f and a free line charge density 4 at the origin,
the generalized stress vector t,, along the interface is simply given by (97) and (105) (Ting
and Yan, 1991). The generalized hoop stress vector is

A

1 Y
= —[G, G;(w)S” 107
t, p(lp)[ (@) +G;(w) ][ﬁ] (107)

which can be shown to be consistent with what is stated in (81) when (88) and (92) are
employed.
In the following the solutions for boundary conditions prescribed as

G My + 63 my+65.m;
~ o o ~T -

. C1aMy + 022y + G333 a o

t,() = | _ . R = ~T}m(w) = [~T:|m(w) (108)
G311 + G3My + G335 D D

lj‘lm1 +ﬁ2m2 +D~3m3

will be derived. Here, & and D are the prescribed uniform stress field and electric displacement
field along the elliptic hole boundary I' within the medium, respectively. Since m*(w) =
[—sinw, cos w, 0], we have from (52)

61 G2

- - z a .o~ - G2 v G2z

Tm(l/l) = IB(—),[/)COS I/Jtl - mSln llltz, t, = i, , b= G1r . (109)
D, D,

The arbitrary constants are determined by comparing with (87), which leads to
g0=0, g =at;, g =bt;, g=8=0 (k=2). (110)

With the use of (49) and (110), (89) reduces to

. . b . :
uly = —SLI[Xﬁz—thl]“L'|:2X1t1+gxzt2j|~ (111)

The generalized hoop stress vector stated in (91) takes the form

. . L. b .a . .
t, = G,(w)[coswt, —sinwt, ]+ G;(w) Ecoswt, + Esm wt, (112)

when (52), (94), (109), and (110) are employed.

For the problem of an elliptic hole subject to a uniform stress field 6> and a uniform
electric displacement field D* at infinity while the surface of the hole is free of traction and
electrically open (Pak, 1992), the solution may be separated into two parts. The first part
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is the uniform solution in which the stress and electric displacement are ¢ and D™
everywhere. The second part is the “disturbed” state due to the presence of the hole. The
solution of the second part must satisfy the boundary conditions that the stress and electric
displacement vanish at infinity while at the hole surface

£.(0) = [ﬂ' V ]m(w). (113)
DTL

This 1s precisely the problem considered in this section.

In general, for an arbitrarily prescribed boundary condition %,,(y) the series solutions
u|r and t, given above retain infinite terms. However, by introducing the conjugate function
(Bary, 1964 ; Ting and Yan, 1991), one can rewrite the infinite series solutions in terms of
definite integrals.

7. A RIGID INCLUSION OF ELECTRIC CONDUCTOR

In Section 6 the solutions for a rigid elliptic inclusion of electric conductor in the
absence of torque are studied. Here, in addition to a line force f and a free line-charge
density /, a counter-clockwise torque Te; is applied. The generalized stress function vector
and generalized displacement vector along the elliptic boundary I' are, respectively,

x

Alr =Yg, +kil [cos(ky)g, —sin(ky)g], ulr = Z [cos(ky)hy, “Sin(klﬁ)ﬁkl (114)

K=

The equilibrium conditions stated in (53) are,

) . ) f
‘§tmdn+f=0, f=[ } (115)
T — A

and t,, is defined in (69),. Using (70), and (114),, (115) reduces to

2n 6 r R ) ) )
_J p(l,/(/b)lél// p(y)dy +1 = ¢(0)|r —pQ2n)|; +f = ~2ng,+1 =0, (116)

which is the same result as given in (96) so that g, can be computed. Since the rigid inclusion
does not deform and the electrostatic potential ¢ (= u,) is constant along the elliptic
boundary I', by ignoring the constant components and noticing that r = acosye, +
bsinje,, we have, by using (79),

ulr = Qacosyé, —bsiniye,). (117)

Some of the arbitrary constants are determined by comparing with (114), which yields
h, = Qaé,, h, =Qb&,, h,=h =0 (k>2). (118)
The constants g, and g, are then obtained from (68), and (68)., respectively. Note that the

angular rotation Qs still unknown. To determine it, we consider the equilibrium of moment
which gives (Chung, 1995 Ting and Yan, 1991)

(119)

where
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U=b"H\'"+d*H>' +2ab(H ' S).,,
=&"H '+H'S)c =" Ze. (120)

In the above ¢" = [—ib, a, 0, 0] and Z is the surface impedance tensor (Lothe and Barnett,
1976 ; Kuo and Barnett, 1991). Hence, one obtains

e T Y inwe, + Dcos we, — S(cos w8, — sin we,) (121)
=— — 4 — —sin - - W&, —sinwe,) |.
n = m T a , S e+ cos e, ) |

For a circular rigid inclusion p() = « = b = [, (121) is simplified to

R 1. T
t, = - f+ —H '[coswd, +sin wé, + S(sin W&, —cos we,)]. (122)
2nl nU

In the case of zero torque, one obtains from (121)

) 1
tm:77~ (123)
p(y) 2n

This means that p()t,, is a constant which is consistent with our observation in (97) and
(105). Furthermore, for a circular rigid inclusion, (122) reduces to

i o Lt 124
mo Dm - 27-[[ ~/’L . ( )

This means that the traction t,, along the circular interface is a constant in the direction of
f. This phenomena was also observed in the purely elastic case (Ting and Yan, 1991).

To find the generalized hoop stress vector f,, (81) is employed in which t,, is given in
(121) and (122) for elliptic and circular rigid inclusion of electric conductor, respectively.

8. A PIEZOELECTRIC INCLUSION

In this section we consider an elliptic piezoelectric inclusion within a piezoelectric
matrix. If the matrix is subjected to uniform fields at infinity, with either &7, E; or
a7, D prescribed such that ¢35 = 0 and E¥ = 0, then the uniform field solutions in the
absence of an elliptic inclusion can be written as (Hwu and Ting, 1989)

0 o= X8 +X87, ¢ =xt3 —x,tf, (125)
in which
‘olxl 2?71
0 £
g =uj = , & =uj = ‘ (126)
2e74 2e3y
—E7 —FE3
and

tf =[of1, 02, 0fs, Di]"= =93, & =[05,, 0%, 05, DI =¢7. (127

Note that (125), is unique up to a rigid body motion and a constant electrostatic potential.
If &;7, E are given, o7, D can be obtained by using (1), (4), and
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&y =5, +u,). (128)
If 6. D are known, the following constitutive equations are employed (Sosa, 1991} :

€y = Sink.vok.\+gkikaa E, = —gu4,00+PiDy. (129)

The zero element in ¢ implies that there is no rotation of the x, axis with respect to the x;
axis. By means of superposition the field solutions in the piezoelectric matrix are (Hwu and
Ting, 1989)

u=u"+2Re{A{x ! >AT}g| +2Re {A<C;I>BT}h‘ } (130)

¢ =¢* +2Re {Bs ' YA g, +2Re {B(k )BT},
The first terms of (130) arise from the uniform ficlds applied at infinity without an inclusion
and are given in (125). The remaining terms are due to the presence of elliptic inclusion

and are equivalent to (61) with £ = 1. Thus, all the derivations obtained in previous sections
can be employed. Along the elliptic inclusion boundary I", (130) is reduced to

ulp = u” | +cosyh, —sinyh,
= acosye’ +bsinyel +cosyh, —sinyh,, (131)

®lr = @™ |- +cosyg, —sinyg,
= gcosyty —hsinyty +cosyg, —sinyg,, (132)

in which (49), (65), and (125) are employed.
The solutions inside the piezoelectric inclusion are assumed uniform and have the form

u = x 8] + X85, @F = X t5—x,t], (133)
where
&, 2e5, —Q
Q €22
&= = L=y = : (134)
214 2e8,
— — 3
and
t = [o7,, 0%, 015, D{f]T = —¢%. 15 =[0%, 6%, 0%, DZ]T = ¢ (135)

The constant Q in &7 and &% represents the rotation of the x,-axis in the inclusion. Along
the elliptic inclusion boundary I', (133) and (49) give

W = acosyel +hsinysl, @°|r = acosyits —hsinyt]. (136)
The continuity condition states that

ulr =ulr. @lr = ¢"Ir- (137)

Employing (131), (132), and (136) in (137) leads to



3360 M. Y. Chungand T. C. T. Ting
as? +h, = agl, bel —h, = b3,

In order to solve h,, g,, &7, 85,1, and t$, two more equations are required. Application of
(43) to the matrix and the inclusion yields

3 &y f:5 &5
el =Lk ~el-15] @
t —t7 3 —t

With (66) we rewrite (138) in matrix form as

h, & ey S HTlh, £ &5
R W A T BT
g t5 ty —-L STleg; —tr —t

Employing (41) and (139), &, t3 are obtained as

b S H &9 b S H &y
R T ] o o B4
a —L ST}l a —L STty

assuming that the matrix on the left is non-singular. The constants h;, g, and £, t] are then
computed from (140), and (139),, respectively. The rigid body rotation Q can easily be
determined from (140), as

q_ B (142)
a

The generalized stress vector along the elliptic inclusion boundary I is given by

s 09lr
tm_¢n_p(w)aw’
~1 -1
= [asinyts 1+ — g, siny+8, 143
o) [asinyty + bcosit ]+p(l/,)[g siny +§, cosy] (143)

when (132), is used. Note that the second part of (143) has the same form as (71), with
k = 1. With (132), the generalized hoop stress vector is

t, = ¢, = ¢ +[cosyg, —sinyg,].. (144)

Observing that cos g, —sin g, is equivalent to ¢"| given in (65), with k = 1, its derivative
with respect to m can be computed as (Chung, 1995; Hwu and Ting, 1989)

[cosyg, —sinyg,],, = ¢ = Ni(whul +Ni(w) o

ou''|r

p(Y) oy

09" |r

R P

+NT(w)

(145)

With u"| given by (65),, when k& = 1, we have
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t _¢1_{N3(a}) [h, siny+h cosW]—i—NHw)
T ) ' )

[g, siny+§, cos l//]} (146)

Again, the second part of (146) is readily obtained by observing that the result stated in
(76), can be employed with &£ = 1. From (52), (73), and (125),, ¢%, is found to be

¢ = ¢ (—sinw)+ ¢35 (cosw) = ———CoS Y +ty siny. (147)

(¢) (t//)

Combining (146) and (147) yields, with (66),

)[tiicbcosxp tFasiny] — {N;(w)[h, siny + (Sh, + Hg,) cos y/]}

"W (t//)

T()lg L +STg, 148
p(v/){N (o)lg siny+(—Lh, +STg,)cosyl}.  (148)
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