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Abstract-The two-dimensional problem of an elliptic hole in a solid of anisotropic piezoelectric
material is studied. The Stroh formalism is adopted here. Real form solutions are obtained along
the hole boundary in the case of an arbitrarily prescribed vector field on the hole surface. For an
elliptic rigid inclusion of electric conductor subjected to a line force, a torque, and a line charge, a
real form solution at the interface is obtained. Finally, general solutions for an elliptic piezoelectric
inclusion with uniform loading at infinity are investigated. Copyright (0 1996 Elsevier Science Ltd

I. INTRODUCTION

In 1958 and 1962, Stroh elaborated the work of Eshelby et al. (1953) on two-dimensional
problems of general anisotropic elasticity involving dislocations, line forces, and steady
waves. This powerful and elegant approach was named the Stroh formalism.

In 1975, Barnett and Lothe extended Stroh's 1962 paper to include the piezoelectric
effect in which an eight-dimensional framework had been developed. Here, we consider the
two-dimensional problem of an elliptic hole in a solid of anisotropic piezoelectric material.
Similar problems had been studied by Pak (1992) and Sosa (1991). Although some useful
solutions had been derived in these two papers, they were both restricted to the transversely
isotropic situation. In Pak's 1992 paper, special remote loading conditions were employed
and the concentration effect was studied. Likewise, only remote loadings were considered
in Sosa's 1991 paper.

Here, solutions of an arbitrarily prescribed loading on the hole surface are derived.
Furthermore, in the case of an elliptic rigid inclusion of electric conductor subjected to a
line force, a torque, and a free line charge, real form solutions along the elliptic interface
are obtained which could be used to examine the concentration effect. Finally, we investigate
the situation of an elliptic piezoelectric inclusion with uniform loading at infinity.

In the following basic solutions of the Stroh formalism with the piezoelectric effect are
given. Some boundary conditions are shown in Section 2. In Sections 3 and 4, a few useful
relations are derived. General field solutions to the elliptic problem are obtained in Section
5 with emphasis on solutions along the elliptic boundary. Such boundary solutions could
be employed to investigate the concentration effect. However, arbitrary constant vectors
are involved and remain unknown. They will be determined in Sections 6, 7, and 8 in which
different boundary conditions are applied.

In a Cartesian coordinate system (x], x 2 , x 3) the constitutive equations for piezoelectric
materials are given by (Tiersten, 1969)

in which repeated indices mean summation and a comma stands for partial differentiation.
(Jij is the elastic stress and Di is the electric displacement. Coefficients Cijkm, emij, W,m are,
respectively, the elastic stiffnesses, piezoelectric constants, and permittivities with the fol
lowing symmetries:
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(2)

Uk is the elastic displacement and <p is the electrostatic potential. Cukm and W im are positive
definite in the sense that

(3)

for arbitrary real nonzero UiJ and Ei with

(4)

In the absence of body forces and free charges, the balance laws require

(5)

For two-dimensional deformations in which Uk and <p depend on Xl and X2 only, a general
solution to (5) is given by

UJ = aJ(z) (J = 1,2,3,4)

in which

and p, aJ are constants to be determined. In matrix notation,

u = a[(z).

Thus u, a are four-vectors and u is called the generalized displacement. By defining

(6)

(7)

(8)

(9)

where

we combine (1), (5), and (6) into one equation as

(11)

The 4 x 4 matrices Q and T are symmetric but not positive definite. However, they can be
shown to be nonsingular.

Let the generalized stress function vector ljJ be defined as

with

-1
ljJ = bj(z), b = (RT +pT)a = -(Q+pR)a,

p
(12)

(13)

The second equality in (12h follows from (11). Equation (13) provides all components of
l'5u and D i except 1'533 and D 3 ; they can be determined from (1).

With the positive definiteness of Cijkm and W im shown in (3), the eigenvalues p of (11)
are all complex and consist of four pairs of complex conjugates. Let
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P,+4 = p--;" 1m {pJ > ° (ex = 1,2,3,4),
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(14)

(15)

where the overbars denote the complex conjugates. The general solution obtained by
superposing eight solutions of (8) and (12), associated with the eight eigenvalues p, are

u = 2 Re ttl aJ.(z,)} 4J = 2 Re ttl b,.f~(z') }

in which Re stands for the real part andf.+4 = J, (ex = 1,2,3,4) is chosen.
In most applications

j~(z,) = qJ(z,) (ex not summed)

is assumed. Hence, eqn (16) reduces to, in matrix notation,

u = 2 Re {A<f(z*) )q}, 4J = 2 Re {B(!(z*) )q}

where A and Bare 4 x 4 matrices given by

and <f(z*» is the 4 x 4 diagonal matrix

(16)

(17)

(18)

(19)

(20)

The elements of the four-vector q are q. (ex = 1, 2, 3,4). Notice that the solutions given in
(18) are in terms of the arbitrary function fez,) and the arbitrary complex constant vector
q.

2. BOUNDARY CONDITIONS

Consider an arc or a contour C described by

(21 )

where s is the arc-length. The unit tangential vector n and the unit normal vector mare
given by

T _ [dX I dx 2 ] T _ [_ dx 2 dx I ]
n- d' d,O,m- d'd'O,s s s s

(22)

respectively. By taking derivative of 4J in the direction of increasing s (with material on the
RIGHT-hand side) and using (13), we obtain

dcPj. dcP4
~ = t, (j = 1,2,3), ds = D'm = D""

in which t j is the component of surface traction vector. Similarly, one obtains

(23)
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dU4
-= -E"n= -Ell'
ds

(24)

If we consider a dielectric interface with materials indicated by "I" and "2", the
electrical conditions at the interface are

(25)

where n is a unit vector tangential to the dielectric interface, m, is an inward normal unit
vector, and (1, is the free surface charge density along the interface. Without loss in
generality, we can rewrite (25) as

(26)

If we have an interface between electric conductor" I" and dielectric "2", then inside
the electric conductor,

(27)

In the dielectric, at the interface

(28)

3. EIGHT-DIMENSIO!'<AL FORMALISM

The two equations in (l2h can be rewritten as

Since T- 1 exists, we can reduce (29) to

N~ = p~,

where

(29)

(30)

(3 I)

(32)

The real 4 x 4 matrices N2 and N3 are symmetric. Equation (30) is a standard eigenreiation
in the eight-dimensional space. There are eight eigenvalues p, «(X = I, 2, ... , 8) and eight
associated eigenvectors ~,. The eigenvalues are the roots of the determinant

liN -pili = o.

The vector ~ in (30) is a right eigenvector. The left eigenvector" is defined by

(33)

(34)
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and can be shown to be

Normalization of ~, and '1/i (which are orthogonal to each other) gives
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(35)

(36)

where 6/3., is the Kronecker delta. Making use of (15), (19), (31b and (35), eqn (36) is
written as

[B
T

ATJ[A ~J = [I OJ.
jjT ;P B B ° 1

(37)

This is the orthogonality relation. The two 8 x 8 matrices on the left hand side of (37) are
the inverses of each other. Their product commutes so that

[A ~J[BT AT
J

= [I OJ.
B B jjT;P ° 1

This is the closure relation and is equivalent to

(38)

Hence, the three matrices S, H, L defined by

S= i(2ABT-I), H= i2AAT, L= -i2BBT (40)

are real. The matrices Hand L are symmetric and nonsingular (Lothe and Barnett, 1976).
Since S, H, L are real, the following relation exists (Chung, 1995; Ting and Yan, 1991)

(41)

which indicates that SH and LS are anti-symmetric. It can be shown that H ~ IS and SL- 1

are also anti-symmetric.
Finally, we rewrite (30) as

N[a!'(Z)J = [apf(Z)J.
b!,(z) bp('(z)

Employing (n, (8), and (12)1 leads to a matrix differential equation for u and ljJ,

(42)

(43)
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4. THE INTEGRAL FORMALISM

Let the tensor EUKm be defined by (Barnett and Lothe, 1975; Kuo and Barnett, 1991)

EiJKm = C,jkm (1, K = 1,2,3),

=emij (J= 1,2,3;K=4),

= e,km (1 = 4; K = 1,2,3),

=-W im (J=K=4).

With new) and mew) given by

nT(w) = [cosw, smw, 0], mT(w) = [-sinw, cosw, 0]

in which w is a real parameter range from 0 to 2n, we let

QJK(W) = n;(w)EUKmnm(w), RJK(w) = ni(w)EuKmmm(w),

TJK(w) = mi(w)EuKmmm(w),

and

N1(w) = -T-1(w)RT(w), N 2 (w) = T I(W),

N 3 (w) = R(w)T-I(w)RT(w)-Q(w).

Lothe and Barnett (1976) have shown that

(44)

(45)

(46)

(47)

I iIT

I ins=- Nj(w)dw, H=- N 2 (w)dw,
non 0

I in-L=- N 3 (w)dw.
n 0

(48)

Equations (48) provide an alternate to (40) for the Barnett-Lothe tensors S, H, and L.

5. THE GENERAL SOLUTIONS

In this section the general solutions for two-dimensional deformations along an elliptic
boundary will be derived (Ting and Yan, 1991). An ellipse f given by

{

XI = acos IjJ
f:

.\2 = bsinljJ
(49)

is shown in Fig. I. Let nand m be the unit vectors tangential and normal to the elliptic
boundary, respectively and w be the angle between vector n and the positive XI axis. Hence,

a

Fig. I. An ellipse in the (Xl. xoJ plane.



Piezoelectric solid with hole

nT = [cosw,sinw,O], mT = [-sinw,cosw,O]

which is (45). The infinitesimal arc-length ds of the ellipse is given by

From (22)1 and (49) we see that

-a . b
cosw = p(lj;)sinlj;, smw = p(lj;) cos lj;

3349

(50)

(51 )

(52)

when comparison is made with (50)1'
If there is a line force f and a free line-charge density I. applied at the origin (Fig. 1),

by employing (23), the equilibrium conditions give

l (tm ); ds = lim <p;(B) - <p,(A) = /; (j = 1,2, 3) )Jr B~A .

l D'mds = lim cP4(B)-<P4(A) = -)"Jr B~4

(53)

in which tm and D are the surface traction and the electric displacement of the medium
along the elliptic boundary r, respectively. Therefore, we have a jump in l/J across the
positive x I axis if f and A. are not equal to zero. Points A and B are in fact the same point
on positive XI axis except that when one moves from A to B counter-clockwise, the whole
ellipse r is transversed.

Consider the transformation

z, = c,(,+d,(:;1 (0: = 1,2,3,4), (54)

where c, and d, are complex constants and z, = XI +p,x2 • The constants c, and d, are
chosen such that when (x 10 x 2 ) c r, (, (IX = 1, 2, 3, 4) is on a unit circle. That is,

Ur = e" = coslj;+isinlj; (IX = 1,2,3,4)

when z, = a cos lj; + p,b sin lj; and one obtains

(55)

a-ip,b
c, = 2

a+ip,b
d, = 2 (56)

Since a, b, and 1m {p,} are all positive and non-zero, it can be shown that the branch points
(, of the transformation (54) are located inside the unit circle in the ,"-plane. Hence, the
branch points in the (x I' x 2) plane are located inside the ellipse. In addition, the trans
formation is one-to-one outside the elliptic hole.

In order to satisfy the jump conditions stated in (53) along the positive XI axis, the
arbitrary functionf(z,) given in (18) is chosen to be

f(z,) = In (" (57)

with z, and (, being related by (54). Also, by putting (Ting, 1986; 1988a, Hwu and Ting,
1989)
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(58)

in (18) where go and hoare real constants, we obtain the first basic solution

ul
= 2 Re {A<ln (*)AT}go +2 Re {A<ln (*)BT}ho}

1J' = 2 Re {B<ln(*)AT}go +2 Re {B<ln(*)BT}ho
(59)

in which <In (*) is the diagonal matrix of In (, with ':I.. = 1, 2, 3, 4. Since In (~ is a multi
valued function, a cut along ljJ = 0 is introduced which makes ul

, 1JI single-valued and
allows a discontinuity along the positive XI axis. As Z~ --+ 00, the elastic stresses and the
electric displacements obtained from (59h vanish. This is consistent with the boundary
conditions at infinity.

In order to provide analytical solutions outside the ellipse,

(60)

are assumed in (18) where gb hk are real constants. Superimposing the solutions from k = 1
to 00 leads to the second basic solution

u" = 2 ,~, Re (A«(.')AT}g. +2 ,~, Re (A«(")BT}b,)

1J1l = 2 L Re {B«*k)AT}gk+2 L Re {B«*k)BT}hk
k~' k~ I

(61)

in which «*k) is the diagonal matrix of (:;k (':I.. = 1,2,3,4). Notice that both ull and 1J1l
approach zero as Zx --+ Cf:J (or (, --+ 00).

With (55) it is easy to see that

<In(*lr) = iljJI, <C/lr) = cos(kljJ)I-isin(kljJ)I.

Substituting back in (59) gives the first basic solution along the elliptic boundary r as

(62)

(63)

(64)

when using (40). Similarly, the second basic solution along the elliptic boundary r is in the
form

x. x

ullir = I [cos(kljJ)hk-sin(kljJ)l1d, 1Jlll r = I [cos(kljJ)gk-sin(kljJ)gd (65)
k~ I k~ I

in which

(66)

Some useful relations between gk' hb gb and 11k are given below (Chung, 1995; Ting
and Yan, 1991).
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n

Fig. 2. Generalized stress vector along the elliptic boundary.

In fact, any two of gk, hb gb and 11k can be written in terms of the others.
In order to investigate the concentration effect, we will derive the generalized stress

vector imand the generalized hoop stress vector in along the elliptic boundary. In Fig. 2, if
n is the arc-length of r measured in the direction of n, then from (23) the generalized stress
vector im is defined as

or, using (51)"

, oc/J Ir
tm = c/J.n = pet/!) at/! .

Substituting c/J11r and c/J"l r given in (63h and (65h leads to

Note that the arbitrary constant vectors go, gk' and gk (k = 1,2, ... ) are involved.
Similarly, in Fig. 3, if the generalized hoop stress vector t is defined by

(69)

(70)

(71)

(72)

with - Dn = D' ( - n), then by letting m be the arc-length measured in the direction of m,
it is clear that

n a
&........._--+.;....-+ Xl

Fig. 3. Generalized hoop stress vector along the elliptic boundary.
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tn = 4J.m = -4J,! sinw+4J.2 cosw (73)

where use has been made of (23) and (50h Alternatively, one can express in in terms of O,n

and tm as (Chung, 1995; Ting and Yan, 1991)

(74)

which is a relation that applies to a general shape of boundary,
For the elliptic boundary r shown in Fig, 3, we have

in which

'( 1 AT'
t n = p(ljJ) [N 3 (w)ho+N, (w)gol

'II N}(w) ~, ,
tn = - p'(ljJ) k';'! {k[sm(kljJ)hk+cos(kljJ)hk]}

NT(w) C'..

- p!(ljJ) k~l {k[sin(kljJ)gk +cos(kljJ)gd}

(75)

(76)

with the use of (63)" (65)" and (71). Again the arbitrary constant vectors are involved.
In the case ofa hole with free surface and electrically open (i,e" zero normal component

of electric displacement), (74) then takes the form

(77)

and tm = 0 (Kuo and Barnett, 1991),
If we have a rigid inclusion of electric conductor with boundary condition E' n = 0

given by (28)" it follows from (24) that (74) is reduced to

(78)

in which Or is the rigid body motion of the boundary. Hence,

(79)

where 00 is a rigid body translation, n is the rotation about X 3 axis and [, is the position
vector of a point on the boundary, For an elliptic boundary r, [, = acos ljJe, + b sin ljJe2'
Thus,

(80)

Substituting (80h into (78) yields (Chung, 1995)

(81)

which is also applicable to circular boundary,
The hoop stress (Jnn is given by



and the two shear stresses are
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(82)

(83)

in which eI = [0,0,1].
Notice that our solutions are all in terms of arbitrary constant vectors gb hb gb hk

with k = 0, 1, 2, ... When we determine these constants, we have the solutions. In the next
three sections, the arbitrary constant vectors will be determined by applying appropriate
boundary conditions.

6. AN ELLIPTIC HOLE

We consider an elliptic hole shown in Fig. 2. Let

01. ~ 0' I.+0" I. ~ ~h"+,~ [co,(k~ )h, - ,in(k~)h,J ).

4Jlr = 4J'lr+4J"lr = IjJgo+ L [cos(kljJ)gk-sin(kljJ)gd
k~l

(84)

The right hand sides of (84) are given by (63) and (65). Since ulr must be single-valued, it
follows from (84)] that

and one obtains

ho = -S·····]Hgo

(85)

(86)

when (68h is employed. The generalized stress vector along the elliptic hole boundary r is,
with (71),

To find t, we first substitute (67) into (84)]. With (85) and

SL - , + L -] ST = 0,

the generalized displacement vector along r becomes

(87)

(88)

X %

ul r = -SL- 1 L [cos(kljJ)gk-sin(kljJ)gd-L-' I [cos (kljJ)gk + sin(kljJ)gd. (89)
k~' k~]

Equation (88) comes from the anti-symmetric property of SL-]. From (75)] the generalized
hoop stress vector then takes the form
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'T }' N,(w)SL- I
•

t,,=[N}(w)-N 3 (w)SL ]tm+ p(lj;) go

N 3 (w)L -I ex; • ,

+ .p(lj;) k~1 {k[sm(klj;)gk -cos(klj;)gd} (90)

in which (87h and (89) are employed. Alternatively, one obtains

(91)

with

(92)

Since N 3(w) is symmetric so is G3(w)L. It can be shown that

(93)

is also symmetric.
For an arbitrarily prescribed boundary condition along r, we define a four-vector

im(lj;),

in which (rm);(l/J) (i = 1,2,3) are arbitrarily prescribed traction components on r while the
stress at infinity vanishes. i5m(l/J) ( = D(l/J)· m) is an arbitrarily prescribed normal com
ponent of electric displacement of the medium along r with the electric displacement
vanishing at infinity also. Notice that Dm(l/J) = 0 refers to the so-called electrically opened
situation (Kuo and Barnett, 1991 ; Pak, 1992). With the arbitrarily prescribed boundary
conditions it is clear that

(94)

Employing (87h and the orthogonality properties between sine and cosine, some of the
arbitrary constant vectors in terms of im(l/J) are determined as

go = 2
1
n fn p(l/J)im(lj;) dl/J

gk = ~: frr p(l/J)im(l/J) sin(kl/J) dlj; (k ~ 1) .

gk = ~: frr p(l/J)tm(l/J) cos(klj;) dl/J (k ~ 1)

(95)

Equations (67h, (85), and (95)1 can then be used to find go. After that, hk and hk are
obtained by employing (67)1 and (67h, respectively. In fact ho can simply be computed
from (86).

Indeed, go is related to the resultant line force f applied on r and the resultant free
line-charge density Aenclosed by r. By considering (53) and (94), the equilibrium equation
becomes
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(96)

where n is the arc-length along the elliptic hole boundary f.
In the following some special boundary conditions of i m (ljJ) are considered. We first

assume

p(IjJ)Dm (ljJ) = f3 = constant.

By (96), one has

Suppose that a uniform pressure p is applied along the elliptic boundary f. i.e.,

T:m (ljJ) = -pm(w).

With this and (98) 1> the prescribed generalized stress vector takes the form

(97)

(98)

(99)

(100)

in which (SOh and (52) are employed. By comparing with (87h the arbitrary constant
vectors gk and gk are easily determined as

where the four-vectors el are defined as

{

I, 1= J
(elL = 0, I -=I J (I,J = 1,2,3,4). (102)

Thus, with (89), the generalized displacement vector along the elliptic boundary is simply

Similarly, with (91), (94), and (100), the generalized hoop stress vector is given by

(103)

psmw

-pcosw

o
f3

p(ljJ)

b
-cosw
a

a .
bsmw

o
o

(104)

Likewise, we can consider a uniform in-plane shear stress r instead of a uniform pressure
p.

In addition to the special boundary condition stated in (97), the traction boundary
condition described by
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f
p(t/!)'m(t/!) = y = constant = 2n (105)

is considered. Following the similar procedure given above, we have

ulr = 0 = constant (106)

which implies that the elliptic hole is not distorted and the electrostatic potential is constant
on the hole surface. Consequently, if the elliptic hole is filled with a rigid electric conductor
and subjected to a concentrated line force f and a free line charge density A at the origin,
the generalized stress vector tm along the interface is simply given by (97) and (105) (Ting
and Yan, 1991). The generalized hoop stress vector is

(107)

which can be shown to be consistent with what is stated in (81) when (88) and (92) are
employed.

In the following the solutions for boundary conditions prescribed as

(108)

will be derived. Here, it and fi are the prescribed uniform stress field and electric displacement
field along the elliptic hole boundary r within the medium, respectively. Since mT(w) =

[- sin w, cos w, 0], we have from (52)

[
~)2
(J 22

8 32

152

(109)

The arbitrary constants are determined by comparing with (87h which leads to

With the use of (49) and (110), (89) reduces to

The generalized hoop stress vector stated in (91) takes the form

(110)

(111 )

til = G) (w)[cos wi2 - sin wi l ] + G 3 (w) [~cos wi, + ~ sin wi2J (112)

when (52), (94), (109») and (110) are employed.
For the problem of an elliptic hole subject to a uniform stress field (1X and a uniform

electric displacement field DX at infinity while the surface of the hole is free of traction and
electrically open (Pak, 1992), the solution may be separated into two parts. The first part
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is the uniform solution in which the stress and electric displacement are (IX and OX
everywhere. The second part is the "disturbed" state due to the presence of the hole. The
solution of the second part must satisfy the boundary conditions that the stress and electric
displacement vanish at infinity while at the hole surface

(113)

This is precisely the problem considered in this section.
In general, for an arbitrarily prescribed boundary condition im(t/J) the series solutions

nl r and tn given above retain infinite terms. However, by introducing the conjugate function
(Bary, 1964; Ting and Yan, 1991), one can rewrite the infinite series solutions in terms of
definite integrals.

7. A RIGID INCLUSION OF ELECTRIC CONDCCTOR

In Section 6 the solutions for a rigid elliptic inclusion of electric conductor in the
absence of torque are studied. Here, in addition to a line force f and a free line-charge
density I., a counter-clockwise torque Te 3 is applied. The generalized stress function vector
and generalized displacement vector along the elliptic boundary r are, respectively,

x ~

q,lr = t/Jgo + I [COS(kt/J)gk -sin(kt/J)gd, ulr = I [cos(kt/J)hk-sin(kt/J)hd. (114)
k~1 k~1

The equilibrium conditions stated in (53) are,

and tm is defined in (69) I' Using (70)2 and (114) J, (115) reduces to

f2 IT oq, Ir' " '
- 0 p(t/J)ot/Jp(t/J)dt/J+f = q,(0)lr-q,(2n)lr+ f = -2ngo+f= 0,

(115)

(116)

which is the same result as given in (96) so that go can be computed. Since the rigid inclusion
does not deform and the electrostatic potential qJ (= u4 ) is constant along the elliptic
boundary r, by ignoring the constant components and noticing that Tr = a cos t/Jel +
b sin t/Je2' we have, by using (79),

(117)

Some of the arbitrary constants are determined by comparing with (l14h which yields

(118)

The constants gk and gk are then obtained from (68)1 and (68h, respectively. Note that the
angular rotation Q is still unknown. To determine it, we consider the equilibrium of moment
which gives (Chung, 1995; Ting and Yan, 1991)

where

T
Q=

nU'
(119)
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U = b2 Hili +a2 H 2/ +2ab(H- 1Sb,

= eT(H I +iH-IS)c = eTZc. (120)

In the above e = [- ib, U, 0, 0] and Z is the surface impedance tensor (Lothe and Barnett,
1976; Kuo and Barnett, 1991). Hence, one obtains

F or a circular rigid inclusion p( t/J) = a = b = I, (121) is simplified to

t
A I fA T H ~ I [ - . - S(' - - )]
m =?I + - cos wei + smwe2+ smwe l -coswe2 .

_n nU

In the case of zero torque, one obtains from (121)

A I f
tm

= p(t/J) 2n'

(121)

(122)

(123)

This means that p(t/J)tm is a constant which is consistent with our observation in (97) and
(105). Furthermore, for a circular rigid inclusion, (122) reduces to

A = [tm
] = _I [ f ]tm 2 1 "Dm n-A,

(124)

This means that the traction tm along the circular interface is a constant in the direction of
f. This phenomena was also observed in the purely elastic case (Ting and Yan, 1991).

To find the generalized hoop stress vector t, (81) is employed in which tm is given in
(121) and (122) for elliptic and circular rigid inclusion of electric conductor, respectively.

8. A PIEZOELECTRIC INCLUSION

In this section we consider an elliptic piezoelectric inclusion within a piezoelectric
matrix. If the matrix is subjected to uniform fields at infinity, with either eij, E'f or
aij, D'f prescribed such that ef3 = 0 and Ef = 0, then the uniform field solutions in the
absence of an elliptic inclusion can be written as (Hwu and Ting, 1989)

in which

(125)

and

sf = u.~ =

[

e~1

2et,

-Et

, B'f == U.2 ==

2e~1

E T
- 2

(126)

Note that (125)1 is unique up to a rigid body motion and a constant electrostatic potential.
If eij, E'f are given, (Jij, D'f can be obtained by using (I), (4), and
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(128)

If (Ju ,Dr are known, the following constitutive equations are employed (Sosa, 1991):

(129)

The zero element in sf implies that there is no rotation of the x I axis with respect to the X3

axis, By means of superposition the field solutions in the piezoelectric matrix are (Hwu and
Ting, 1989)

u = u7 + 2 Re {A«; j )AT}gl + 2 Re {A«; I)BT}h l }.

if> = if>x +2 Re {B«; I)AT}gj +2 Re {B«* I)BT}h 1

(130)

The first terms of (130) arise from the uniform fields applied at infinity without an inclusion
and are given in (125). The remaining terms are due to the presence of elliptic inclusion
and are equivalent to (61) with k = I. Thus, all the derivations obtained in previous sections
can be employed. Along the elliptic inclusion boundary r, (130) is reduced to

ul, = U
X I, +cos ljJh , - sin ljJh ,

= acosljJs~ +hsinljJsf +cosljJh\-sinljJh
"

= acosljJt{ -hsinljJt~ +cosljJg,-sinljJg),

(l3!)

(132)

in which (49), (65), and (125) are employed.
The solutions inside the piezoelectric inclusion are assumed uniform and have the form

(133)

where

2t;~I-Q

(134)

Eo
- 2

and

The constant Q in s'! and s~ represents the rotation of the xI-axis in the inclusion. Along
the elliptic inclusion boundary r, (133) and (49) give

u"I, = acos ljJs'{ +h sin ljJs~, if>"I, = acos ljJt'~ -h sin ljJt l!.

The continuity condition states that

ul, = u"I" if>I, = if>°l,·

Employing (131), (132), and (136) in (137) leads to

(136)

(137)
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(138)

In order to solve hI> gl> l:~, l:~, tL and t2, two more equations are required. Application of
(43) to the matrix and the inclusion yields

[l:f] [l:f] [G~] [G~]
N tf = _ tf' N° t~ = - t~ .

With (66) we rewrite (138) in matrix form as

[hi] [G~] [Gf] [S "][hl
] [ Gf] [G2]

gl = a ~ -a tf' _ L ST gl = b -t1" -b -t~ .

Employing (41) and (139), G~, t~ are obtained as

(139)

(140)

(141)

assuming that the matrix on the left is non-singular. The constants hi, gl and G~, t~ are then
computed from (140)1 and (139h, respectively. The rigid body rotation n can easily be
determined from (140)1 as

The generalized stress vector along the elliptic inclusion boundary r is given by

, o4>lr
tm= 4>,n = p(lj;) olj; ,

-1 -1
= p(lj;) [asinlj;tf+bcoslj;tfl+ p(lj;) [gl sinlj;+g[ coslj;l

(142)

(143)

when (132)2 is used. Note that the second part of (143) has the same form as (71h with
k = 1. With (132)1 the generalized hoop stress vector is

(144)

Observing that cos lj;gl - sin lj;gl is equivalent to 4>lI lr given in (65)2 with k = 1, its derivative
with respect to m can be computed as (Chung, 1995; Hwu and Ting, 1989)

[coslj;g, -sinlj;g[l.m = 4>~~ = N3(W)U~~+NT(w)4>I~,

ou11lr T o4>IIlr
= N](w) p(lj;) olj; +N[ (w) p(lj;) olj; (145)

With ulIlr given by (65)1> when k = 1, we have
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(146)

Again, the second part of (146) is readily obtained by observing that the result stated in
(76h can be employed with k = I. From (52), (73), and (125)b 4>',';;, is found to be

(147)

Combining (146) and (147) yields, with (66),

, - I 1
tn = p(lj;) [t~b cos lj; -tfa sin lj;] - p(lj;) {N3 (w)[h j sin lj; + (Sh] + Hg j ) cos lj;]}

- p/lj;) {NT (w)[g, sin lj; +(-Lh j +STgl) cos lj;]}. (148)
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